Computational science

From this morning’s Observer column.

One of the diseases studied was lung cancer. The research revealed 23,000 mutations that were exclusive to the diseased cells. Almost all were caused by the 60 or so chemicals in cigarette smoke that stick to DNA and deform it. “We can say that one mutation is fixed in the genome for every 15 cigarettes smoked,” said Peter Campbell, the scientist who led the lung cancer part of the study. “That is frightening because many people smoke a packet of 20 a day.”

Although these stories are reports about medical research, they are really about computing – in the sense that neither would have been possible without the application of serious computer power to masses of data. In that way they reflect a new – but so far unacknowledged – reality; that in many important fields leading-edge scientific research cannot be done without access to vast computational and data-handling facilities, with sophisticated software for analysing huge data-sets.

In many significant areas, advanced research is no longer done by individuals looking through microscopes or telescopes, but by computers enabling investigators to collate, visualise and analyse the torrents of data produced by arrays of instruments…